《Water Resources Management》刊登“预测干旱等级:加拿大水文干旱的简单模型”
作者:T. C. Sharma, U. S. Panu
刊物:《Water Resources Management》2013年, 第27卷3期, 649-664页
关键词:赤字量,干旱强度,干旱等级,马尔可夫链,标准化水文指数,截断正态分布
摘要:乘法公式干旱程度(M) = 干旱强度(I)×干旱持续时间(L)被用作预测某个时间段内水文干旱程度的最大理论值E(MT)。预测的E(MT)值是根据SHI(标准化水文指数,相当于标准正态变量)年度和月度的径流时间序列推算出的。假定I(干旱强度)的概率分布函数(pdf)遵循正态分布。采用旱期某些特定的时间段作为干旱时长(Lc),干旱时长可以用预期的最长(极端)持续时间E(LT)和旱期平均持续时间(Lm)以及可能涉及到的参数ø(范围0-1)的线性组合表述。假定干旱等级(赤字总和,M)遵循一个基于M的实测行为的伽马概率分布函数。模型 M = I × L 通过两个近似值被引用,即调用。Type-1只涉及到I 的平均值,Type-2包含I的平均值和方差。通过合适序列的马尔可夫链模型(MC)获得E(LT)结果是年际时间尺度下的0阶马尔可夫链(MC-0)。在月时间尺度上,用滞后-1的自相关低值(ρ < 0.3)的SHI序列的0阶马尔可夫链和ρ > 0.3的SHI序列的1阶马尔可夫链(MC-1)代表E(LT)。在低临界值(q ≤ 0.2),E(MT) = E(I) × E(LT)不考虑极数定理,赤字总和(M)的概率分布函数(pdf)得出满意的结果.
Predicting Drought Magnitudes: A Parsimonious Model for Canadian Hydrological Droughts
Authors: T. C. Sharma, U. S. Panu
Journal: Water Resources Management, February 2013, Volume 27, Issue 3, pp 649-664
Keywords: Deficit-volume, Drought intensity, Drought magnitude, Markov chain, Standardized hydrological index, Truncated normal distribution
Abstract: A multiplicative relationship, drought magnitude (M) = drought intensity (I) × drought duration or length (L) is used as a basis for predicting the largest expected value of hydrological drought magnitude, E(MT) over a period of T-year (or month). The prediction of E(MT) is carried out in terms of the SHI (standardized hydrological index, tantamount to standard normal variate) sequences of the annual and monthly streamflow time series. The probability distribution function (pdf) of I (drought intensity) was assumed to follow a truncated normal. The drought length (Lc) was taken as some characteristic duration of the drought period, which is expressible as a linear combination of the expected longest (extreme) duration, E(LT) and the mean duration, Lm of droughts and is estimated involving a parameter ø (range 0 to 1). The drought magnitude (deficit-sum, M) has been assumed to follow a gamma pdf, in view of the observed behavior of M. The model M = I × L has been invoked via two approximations, viz. Type-1 involves only mean of I and Type-2 involves both mean and variance of I through the theorem of extremes of random numbers of random variables. The E(LT) were obtained using the Markov chain (MC) model of an appropriate order, which turned out to be zero order Markov chain (MC-0) at the annual time scale. At the monthly time scale, the E(LT) was best represented by MC-0 for SHI sequences with low value of lag-1 autocorrelation (ρ < 0.3) and first order Markov chain (MC-1) for SHI sequences with ρ > 0.3. At low cutoff levels (q ≤ 0.2), the trivial relationship E(MT) = E(I) × E(LT) i.e. without considerations of the extreme number theorem and the pdf of M yielded satisfactory results.
原文链接:http://link.springer.com/article/10.1007/s11269-012-0207-x
翻译:杨泽凡;
审核:刘淼